skip to main content


Search for: All records

Creators/Authors contains: "Sun, Xiaoming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although the intensity of extreme precipitation is predicted to increase with climate warming, at the weather scale precipitation extremes over most of the globe decrease when temperature exceeds a certain threshold, and the spatial extent of this negative scaling is projected to increase as the climate warms. The nature and cause of the negative scaling at high temperature and its implications remain poorly understood. Based on sub-daily data from observations, reanalysis data, and output from a coarse-resolution (∼200 km) global model and a fine-resolution (4 km) convection-permitting regional model, we show that the negative scaling is primarily a reflection of high temperature suppressing precipitation over land and storm-induced temperature variation over the ocean. We further identify the high temperature-induced increase of saturation deficit as a critical condition for the negative scaling of extreme precipitation over land. Large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation. The heat-induced suppression of precipitation, both for its mean and extremes, provides one mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land is expected to increase in a warmer climate, our results imply a growing prevalence of negative scaling, potentially increasing the frequency of compound drought and heat events. Understanding the physical mechanisms underlying the negative scaling of precipitation at high temperature is, therefore, essential for assessing future risks of extreme events, including not only flood due to extreme precipitation but also drought and heatwaves. 
    more » « less
  2. We consider algorithms with access to an unknown matrix M ε F n×d via matrix-vector products , namely, the algorithm chooses vectors v 1 , ⃛ , v q , and observes Mv 1 , ⃛ , Mv q . Here the v i can be randomized as well as chosen adaptively as a function of Mv 1 , ⃛ , Mv i-1 . Motivated by applications of sketching in distributed computation, linear algebra, and streaming models, as well as connections to areas such as communication complexity and property testing, we initiate the study of the number q of queries needed to solve various fundamental problems. We study problems in three broad categories, including linear algebra, statistics problems, and graph problems. For example, we consider the number of queries required to approximate the rank, trace, maximum eigenvalue, and norms of a matrix M; to compute the AND/OR/Parity of each column or row of M, to decide whether there are identical columns or rows in M or whether M is symmetric, diagonal, or unitary; or to compute whether a graph defined by M is connected or triangle-free. We also show separations for algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right, versus algorithms that can query vectors on both the left and the right. We also show separations depending on the underlying field the matrix-vector product occurs in. For graph problems, we show separations depending on the form of the matrix (bipartite adjacency versus signed edge-vertex incidence matrix) to represent the graph. Surprisingly, very few works discuss this fundamental model, and we believe a thorough investigation of problems in this model would be beneficial to a number of different application areas. 
    more » « less
  3. Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance. 
    more » « less
  4. Abstract

    Past studies based on univariate scaling analyses at the weather time scale documented a negative scaling of extreme precipitation intensity (EPI), which prevents EPI extrapolation from past climate. Here we present a bivariate scaling analysis and show that, contrary to the univariate scaling results, EPI monotonically increases with temperature and shows no negative scaling when controlled for saturation deficit. The observed EPI‐temperature relationship in saturated atmosphere is surprisingly similar among different regions and closely follows the Clausius‐Clapeyron scaling; climate models produce greater regional dependence of the scaling relationship with a wide range of scaling rate. For extratropical regions, the model‐simulated EPI‐temperature relationship under saturation shows a past‐to‐future continuity, which could potentially support extrapolation to a warmer climate. The scaling at saturation bridges the EPI‐temperature relationship between weather and climate time scales and may enable potential prediction of future precipitation extremes via extrapolation from past observations.

     
    more » « less
  5. null (Ed.)
  6. Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel–iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni), affording superior catalytic activity and corrosion resistance in solar-driven alkaline seawater electrolysis operating at industrially required current densities (0.4 to 1 A/cm2) over 1,000 h. A continuous, highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents toward water oxidation and an in situ-generated polyatomic sulfate and carbonate-rich passivating layers formed in the anode are responsible for chloride repelling and superior corrosion resistance of the salty-water-splitting anode.

     
    more » « less
  7. null (Ed.)
    Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kinetics remain understudied, including the impact of remdesivir. In hospitalized individuals, peak sputum viral load occurred in week 2 of symptoms, whereas viremia peaked within 1 week of symptom-onset, suggesting early systemic seeding of SARS-CoV-2. Remdesivir treatment was associated with faster viral decay. 
    more » « less
  8. Abstract

    Hybrid electrodes with improved O2tolerance and capability of CO2conversion into liquid products in the presence of O2are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic CO2molecule and the basic amino group of aniline renders enhanced CO2separation from O2. Loaded with a cobalt phthalocyanine‐based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 % O2in the CO2feed gas. The electrode can still produce CO at an O2/CO2ratio as high as 9:1. Switching to a Sn‐based catalyst, for the first time O2‐tolerant CO2electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of 56.7 mA cm−2in the presence of 5 % O2.

     
    more » « less